Qubit teleportation between non-adjacent nodes in a quantum network

  • Kimble, H. J. The Quantum Internet. temper nature 4531023-1030 (2008).

    ADS CAS Google Scholar Essay

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum Internet: a vision for the way forward. Science 362eaam9288 (2018).

    ADS MathSciNet Google Scholar Essay

  • Bennett, C.H. et al. Teleportation of an unknown quantum state through classical double channels and Einstein-Podolsky-Rosen channels. Phys. pastor. Lett. 701895-1899 (1993).

    ADS MathSciNet CAS Google Scholar Essay

  • Bouwmeester, D. et al. Experimental quantum teleportation. temper nature 390575-579 (1997).

    ADS CAS Google Scholar Essay

  • Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of the teleportation of an unknown pure quantum state via classical dual channels and Einstein-Podolsky-Rosen. Phys. pastor. Lett. 801121-1125 (1998).

    ADS MathSciNet CAS Google Scholar Essay

  • Furusawa, A. et al. Unconditional quantum teleportation. Science 282706-709 (1998).

    ADS CAS Google Scholar Essay

  • Olmashink, S et al. Quantum teleportation between qubits of distant matter. Science 323486-489 (2009).

    ADS CAS Google Scholar Essay

  • Nölleke, C. et al. Effective transmission between quantum memories of a single distant atom. Phys. pastor. Lett. 110140403 (2013).

    ADS Article Scholar from Google

  • Pfaff, W et al. Unconditional quantum teleportation between distant solid-state bits. Science 345532-535 (2014).

    ADS MathSciNet CAS Google Scholar Essay

  • Langenfeld, S et al. Quantum teleportation between distant qubit memories with only one photon as the source. Phys. pastor. Lett. 126130502 (2021).

    ADS CAS Google Scholar Essay

  • Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A. & Smith, A. Securing a quantitative multilateral account by a strict (only) honest majority. at Brooke. 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06) 249-258 (IEEE, 2006).

  • Arora, A. S., Roland, J. & Weis, S. Flipping a weak quantum coin. at Brooke. ACM’s 51st Annual Symposium on Theory of Computing (STOC 2019) 205-216 (ACM, 2019).

  • van meter, t. quantum networks (Wiley, 2014).

  • Bao, X.-H. et al. Quantum teleportation between quantum memories of a distant atomic group. Brooke. Christmas cad. Science. 10920347-20351 (2012).

    ADS CAS Google Scholar Essay

  • Briegel, H.-J., Dür, W., Cirac, JI & Zoller, P. Quantum repeaters: the role of imperfect local processes in quantum communication. Phys. pastor. Lett. 815932-5935 (1998).

    ADS CAS Google Scholar Essay

  • Cabrillo, C., Cirac, J. I., García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. pastor. a 591025–1033 (1999).

    ADS CAS Google Scholar Essay

  • Bose, S., Knight, P. L., Plenio, M. B. & Vidal, V. A proposal for teleportation of atomic state via cavity decay. Phys. pastor. Lett. 835158-5161 (1999).

    ADS CAS Google Scholar Essay

  • Bombelli, M et al. Realization of a multi-code quantum network of distant solid-state qubits. Science 372259–264 (2021).

    ADS CAS Google Scholar Essay

  • Humphreys, Bessie et al. The deterministic delivery of distant entanglement on a quantum network. temper nature 558268-273 (2018).

    ADS CAS Google Scholar Essay

  • Legero, T., Wilk, T., Kuhn, A. & Rempe, G. Time-resolved two-photon quantum interference. a program. Phys. B 77797-802 (2003).

    ADS CAS Google Scholar Essay

  • Bradley, C. et al. Solid-state spin register of up to ten qubits with quantum memory up to one minute. Phys. pastor. X 9031045 (2019).

    Google Scholar CAS

  • Kramer, J. et al. Frequent correction of quantum error on a continuously encrypted qubit via real-time feedback. nat. comm 711526 (2016).

    ADS CAS Google Scholar Essay

  • Robledo, L. et al. High-resolution projective reading of the solid-state quantum spin record. temper nature 477574-578 (2011).

    ADS CAS Google Scholar Essay

  • Jiang, L.; et al. Repeated readouts of a single electron spin via quantum logic with nuclear spin rings. Science 326267-272 (2009).

    ADS CAS Google Scholar Essay

  • van Enk, S. J., Lütkenhaus, N. & Kimble, H. J. Experimental procedures for checking entanglement. Phys. pastor. a 75052318 (2007).

    ADS Article Scholar from Google

  • Broadbent, A., Fitzsimons, J. & Kashefi, E. Global blind quantum computation. at Brooke. 2009 50th Annual IEEE Symposium on Foundations of Computer Science 517-526 (IEEE, 2009).

  • Rose, BC et al. Monitoring of an environmentally insensitive solid-state rotation defect in diamond. Science 36160-63 (2018).

    ADS CAS Google Scholar Essay

  • Nguyen, C et al. Quantum network nodes based on diamond qubits with an effective nanophotonic interface. Phys. pastor. Lett. 123183602 (2019).

    ADS CAS Google Scholar Essay

  • Trusheim, ME et al. Convert finite photons from the coherent spin to the tin vacancy in diamond. Phys. pastor. Lett. 124023602 (2020).

    ADS CAS Google Scholar Essay

  • Ibn, NT et al. Development of silicon carbide for quantum quantum electronics. a program. Phys. Lett. 116190501 (2020).

    ADS CAS Google Scholar Essay

  • Lukin, DM, Guidry, MA & Vučković, J. Merging quantum photonics with silicon carbide: challenges and prospects. PRX Quantum 1020102 (2020).

    Google Scholar Articles

  • Kendim, JM et al. Control and read one shot of an ion embedded in a nanophotonic cavity. temper nature 580201-204 (2020).

    ADS CAS Google Scholar Essay

  • Chen, S., Raha, M., Phenicie, C. M., Ourari, S. & Thompson, J. D. Parallel single-shot measurement and coherent control of a solid-state spin below the diffraction limit. Science 370592-595 (2020).

    Article CAS Scholar from Google

  • Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamonds. J. Apple. Phys. 130070901 (2021).

    ADS CAS Google Scholar Essay

  • Green, M. E., Stevens, M. L., Hardy, N. D. & Benjamin Dixon, P. Stabilization of long and diffuse optical fiber links for quantum networks. at Brooke. 2017 Conference on Lasers and Electro-Optics (CLEO 2017) 1-2 (IEEE, 2017).

  • Dahlberg, A. et al. Link Layer Protocol for Quantum Networks. at Brooke. ACM Special Interest Group on Data Communications (SIGCOMM ’19) 159-173, (ACM, 2019).

  • Hensen, b. et al. Violation of the gap-free Bell inequality using electronic courses separated by 1.3 km. temper nature 526682-686 (2015).

    ADS CAS Google Scholar Essay

  • Leave a Comment